前言
okhttp是目前很火的网络请求框架,Android4.4开始HttpURLConnection的底层就是采用okhttp实现的,其Github地址:https://github.com/square/okhttp
来自官方说明:
OkHttp is an HTTP client that’s efficient by default:
HTTP/2 support allows all requests to the same host to share a socket.
Connection pooling reduces request latency (if HTTP/2 isn’t available).
Transparent GZIP shrinks download sizes.
Response caching avoids the network completely for repeat requests.
总结一下,OkHttp支持http2,当然需要你请求的服务端支持才行,针对http1.x,OkHttp采用了连接池降低网络延迟,内部实现gzip透明传输,使用者无需关注,支持http协议上的缓存用于避免重复网络请求。
使用方法
引入依赖
implementation 'com.squareup.okhttp3:okhttp:3.14.4'
请求网络
OkHttpClient okHttpClient = new OkHttpClient();
Request request = new Request.Builder().url("http://mtancode.com/").build();
// 同步方式
Response response = okHttpClient.newCall(request).execute();
// 异步方式
okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
Log.i(TAG, "onFailure");
e.printStackTrace();
}
@Override
public void onResponse(Call call, Response response) {
try {
Log.i(TAG, response.body().string());
} catch (Throwable t) {
t.printStackTrace();
}
}
});
可以看到,使用起来非常简单,而且支持同步和异步两种方式请求网络。这里需要注意一下,回调的线程并不是UI线程。
主流程分析
同步和异步只是使用方式不同,但其原理都是一样的,最终会走到相同的逻辑,因此这里就直接从异步方式开始分析了,newCall方法会返回一个RealCall对象,看其enqueue方法:
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
transmitter.callStart();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
这里有个Dispatcher,顾名思义它就是专门分发和执行请求的,看它的enqueue方法:
void enqueue(AsyncCall call) {
synchronized (this) {
readyAsyncCalls.add(call);
// Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to
// the same host.
if (!call.get().forWebSocket) {
AsyncCall existingCall = findExistingCallWithHost(call.host());
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall);
}
}
promoteAndExecute();
}
把call添加到readyAsyncCalls列表中,看promoteAndExecute方法:
private boolean promoteAndExecute() {
assert (!Thread.holdsLock(this));
List<AsyncCall> executableCalls = new ArrayList<>();
boolean isRunning;
synchronized (this) {
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall asyncCall = i.next();
if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity.
i.remove();
asyncCall.callsPerHost().incrementAndGet();
executableCalls.add(asyncCall);
runningAsyncCalls.add(asyncCall);
}
isRunning = runningCallsCount() > 0;
}
for (int i = 0, size = executableCalls.size(); i < size; i++) {
AsyncCall asyncCall = executableCalls.get(i);
asyncCall.executeOn(executorService());
}
return isRunning;
}
把call搬到runningAsyncCalls中,遍历列表,对每个call调用executeOn方法:
void executeOn(ExecutorService executorService) {
assert (!Thread.holdsLock(client.dispatcher()));
boolean success = false;
try {
executorService.execute(this);
success = true;
} catch (RejectedExecutionException e) {
InterruptedIOException ioException = new InterruptedIOException("executor rejected");
ioException.initCause(e);
transmitter.noMoreExchanges(ioException);
responseCallback.onFailure(RealCall.this, ioException);
} finally {
if (!success) {
client.dispatcher().finished(this); // This call is no longer running!
}
}
}
看AsyncCall的execute方法:
@Override protected void execute() {
boolean signalledCallback = false;
transmitter.timeoutEnter();
try {
Response response = getResponseWithInterceptorChain();
responseCallback.onResponse(RealCall.this, response);
......
}
来到getResponseWithInterceptorChain方法,该方法内部会执行所有具体的处理逻辑,执行结束后,返回一个最终的response,然后回调给外部传入的callback,看看getResponseWithInterceptorChain方法:
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(new RetryAndFollowUpInterceptor(client));
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
originalRequest, this, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
boolean calledNoMoreExchanges = false;
try {
Response response = chain.proceed(originalRequest);
if (transmitter.isCanceled()) {
closeQuietly(response);
throw new IOException("Canceled");
}
return response;
} catch (IOException e) {
calledNoMoreExchanges = true;
throw transmitter.noMoreExchanges(e);
} finally {
if (!calledNoMoreExchanges) {
transmitter.noMoreExchanges(null);
}
}
}
可以看到,这里添加了一系列的拦截器,构成拦截器链,请求会沿着这条链依次调用其intercept方法,每个拦截器都做自己该做的工作,最终完成请求,返回最终的response对象。
简单说下链式调用的实现方法:创建一个RealInterceptorChain,传入所有的interceptors,和当前index(从0开始),然后调用RealInterceptorChain的process方法,该方法里,获取到对应的interceptor,然后调用intercept方法,而在intercept方法中,会执行具体的处理逻辑,然后创建一个RealInterceptorChain,传入所有的interceptors,和当前index+1,继续调用RealInterceptorChain的process方法,如此重复直到index超过interceptors个数为止。其实这种实现方式跟Task实现链式调用很类似,整个调用过程会创建一系列的中间对象。
继续回到okhttp,这里其实是一种责任链设计模式,它的优点有:
可以降低逻辑的耦合,相互独立的逻辑写到自己的拦截器中,也无需关注其它拦截器所做的事情。
扩展性强,可以添加新的拦截器。
当然它也有缺点:
因为调用链路长,而且存在嵌套,遇到问题排查其它比较麻烦。
对于OkHttp,我们可以添加自己的拦截器:
OkHttpClient.Builder builder = new OkHttpClient().newBuilder();
builder.addInterceptor(new Interceptor() {
@Override
public Response intercept(Chain chain) throws IOException {
// TODO 自定义逻辑
return chain.proceed(chain.request());
}
});
来到这里,OkHttp的主流程就分析完了,至于具体的缓存逻辑,连接池逻辑,网络请求这些,都是在对应的拦截器里面实现的,下面对这些拦截器逐个进行分析。
缓存机制
代码在CacheInterceptor类中,实现HTTP协议的缓存机制,OkHttp默认并不没有开启缓存,要自己传入一个Cache对象。
先了解下HTTP协议的缓存机制:
首先缓存分为三种:过期时间缓存、第一差异缓存和第二差异缓存,而且在优先级上,过期时间缓存 > 第一差异缓存 > 第二差异缓存。
过期时间缓存,就是通过HTTP响应头部的字段控制:
expires:响应字段,绝对过期时间,HTTP1.0。
Cache-Control:响应字段,相对过期时间,HTTP1.1。注意如果值为no-cache,表示跳过过期时间缓存逻辑,值为no-store表示跳过过期时间缓存逻辑和差异缓存逻辑,也就是不使用缓存数据。
当客户端请求时,发现缓存未过期,就直接返回缓存数据了,不请求网络,否则,执行第一差异缓存逻辑:
If-None-Match:请求字段,值为ETag。
ETag:响应字段,服务端会根据内容生成唯一的字符串。
如果服务端发现If-None-Match的值和当前ETag一样,就说明数据内容没有变化,就返回304,否则,执行第二差异缓存逻辑:
If-Modified-Since:请求字段,客户端告诉服务端本地缓存的资源的上次修改时间。
Last-Modified:响应字段,服务端告诉客户端资源的最后修改时间。
如果服务端发现If-Modified-Since的值就是资源的最后修改时间,就说明数据内容没有变化,就返回304,否则,返回所有资源数据给客户端,响应码为200。
回到OkHttp,CacheInterceptor拦截器处理的逻辑,其实就是上面所说的HTTP缓存逻辑,注意到OkHttp提供了一个现成的缓存类Cache,它采用DiskLruCache实现缓存策略,至于缓存的位置和大小,需要你自己指定。
这里其实会有个问题,上面的缓存都是依赖HTTP协议本身的缓存机制的,如果我们请求的服务器不支持这套缓存机制,或者需要实现更灵活的缓存管理,直接使用上面这套缓存机制就可能不太可行了,这时我们可以自己新增拦截器,自行实现缓存的管理。
连接池
连接池的逻辑在ConnectInterceptor拦截器中处理,看intercept方法:
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
Transmitter transmitter = realChain.transmitter();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks);
return realChain.proceed(request, transmitter, exchange);
}
关键代码就是调用了Transmitter的newExchange方法,最终会得到一个Exchange对象,该对象表示一条连接,用于后面实现请求和读取响应数据,为了避免陷入代码中无法自拔,这里就不一步一步跟踪newExchange方法了,它最后会调用ExchangeFinder的findConnection的方法,这个方法就是在连接池中寻找可复用的连接,当然如果没找到,就创建一个新的连接,OkHttp对连接池的管理是在RealConnectionPool类中:
public final class RealConnectionPool {
/**
* Background threads are used to cleanup expired connections. There will be at most a single
* thread running per connection pool. The thread pool executor permits the pool itself to be
* garbage collected.
*/ private static final Executor executor = new ThreadPoolExecutor(0 /* corePoolSize */,
Integer.MAX_VALUE /* maximumPoolSize */, 60L /* keepAliveTime */, TimeUnit.SECONDS,
new SynchronousQueue<>(), Util.threadFactory("OkHttp ConnectionPool", true));
/** The maximum number of idle connections for each address. */ private final int maxIdleConnections;
private final long keepAliveDurationNs;
private final Runnable cleanupRunnable = () -> {
while (true) {
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (RealConnectionPool.this) {
try {
RealConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
}
}
}
}
};
private final Deque<RealConnection> connections = new ArrayDeque<>();
......
}
主要关注几个重要的成员变量,maxIdleConnections表示连接池的最大缓存连接数,这里外部传入了5,也就是最多缓存5个连接,缓存的连接都被放到connections中,而keepAliveDurationNs表示连接的缓存时长,这里为5分钟,我们还看到这里还有个executor,它就是用来清理过期连接。
数据传输
在CallServerInterceptor拦截器中处理,采用okio实现,http请求和读取响应最终是在Http1ExchangeCodec或Http2ExchangeCodec中实现的。
透明gzip压缩
在BridgeInterceptor拦截器中处理,看一下intercept方法:
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
......
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
......
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
可以看到,OkHttp默认会为我们加上gzip头部字段,如果服务端支持的话,就会返回gzip压缩后的数据,这样就可以缩短传输时间和减少传输数据大小,接收到gzip压缩后的数据后,Okhttp会自动帮我们解压缩,所以这一切对使用者来说都是透明的,无需关注,当然如果我们自己明确指定了用gzip压缩,解压缩的事情就需要我们自己来做了。
支持HTTP2
OkHttp2支持HTTP2协议,当然如果服务端不支持就没办法了,针对HTTP2的相关类都在okhttp3.internal.http2包下,有兴趣可以自行查看源码。
关于HTTP2的优点,主要有:
多路复用:就是针对同个域名的请求,都可以在同一条连接中并行进行,而且头部和数据都进行了二进制封装。
二进制分帧:传输都是基于字节流进行的,而不是文本,二进制分帧层处于应用层和传输层之间。
头部压缩:HTTP1.x每次请求都会携带完整的头部字段,所以可能会出现重复传输,因此HTTP2采用HPACK对其进行压缩优化,可以节省不少的传输流量。
服务端推送:服务端可以主动推送数据给客户端。
参考文章
解密HTTP/2与HTTP/3 的新特性
作者:mtancoder
链接:https://juejin.im/post/5e185d3c6fb9a02ff254a44c
喜欢 就关注吧,欢迎投稿!
如有任何疑问可在文章底部留言。为了防止恶意评论,本博客现已开启留言审核功能。但是博主会在后台第一时间看到您的留言,并会在第一时间对您的留言进行回复!欢迎交流!
本文链接: https://leetcode.jp/okhttp必须弄清楚的几个原理性问题/