题目大意:
受标签影响的最大值
我们有一个项的集合,其中第 i
项的值为 values[i]
,标签为 labels[i]
。
我们从这些项中选出一个子集 S
,这样一来:
- |S| <= num_wanted
- 对于任意的标签
L
,子集S
中标签为L
的项的数目总满足<= use_limit
。
返回子集 S
的最大可能的 和。
题目大意:
受标签影响的最大值
我们有一个项的集合,其中第 i
项的值为 values[i]
,标签为 labels[i]
。
我们从这些项中选出一个子集 S
,这样一来:
L
,子集 S
中标签为 L
的项的数目总满足 <= use_limit
。 返回子集 S
的最大可能的 和。
题目大意:
二进制矩阵中的最短路径
在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。
一条从左上角到右下角、长度为 k
的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k
组成:
C_i
和 C_{i+1}
在八个方向之一上连通(此时,C_i
和 C_{i+1}
不同且共享边或角)C_1
位于 (0, 0)
(即,值为 grid[0][0]
)C_k
位于 (N-1, N-1)
(即,值为 grid[N-1][N-1]
)C_i
位于 (r, c)
,则 grid[r][c]
为空(即,grid[r][c] == 0
)返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。
题目大意:
拼车
假设你是一位顺风车司机,车上最初有 capacity 个空座位可以用来载客。由于道路的限制,车 只能 向一个方向行驶(也就是说,不允许掉头或改变方向,你可以将其想象为一个向量)。
这儿有一份行程计划表 trips[][],其中 trips[i] = [num_passengers, start_location, end_location] 包含了你的第 i 次行程信息:
・必须接送的乘客数量;
・乘客的上车地点;
・以及乘客的下车地点。
这些给出的地点位置是从你的 初始 出发位置向前行驶到这些地点所需的距离(它们一定在你的行驶方向上)。
请你根据给出的行程计划表和车子的座位数,来判断你的车是否可以顺利完成接送所用乘客的任务(当且仅当你可以在所有给定的行程中接送所有乘客时,返回 true,否则请返回 false)。
继续阅读题目大意:
地图分析
你现在手里有一份大小为 N x N 的『地图』(网格) grid,上面的每个『区域』(单元格)都用 0 和 1 标记好了。其中 0 代表海洋,1 代表陆地,你知道距离陆地区域最远的海洋区域是是哪一个吗?请返回该海洋区域到离它最近的陆地区域的距离。
我们这里说的距离是『曼哈顿距离』( Manhattan Distance):(x0, y0) 和 (x1, y1) 这两个区域之间的距离是 |x0 – x1| + |y0 – y1| 。
如果我们的地图上只有陆地或者海洋,请返回 -1。
示例 1:
输入:[[1,0,1],[0,0,0],[1,0,1]] 输出:2 解释: 海洋区域 (1, 1) 和所有陆地区域之间的距离都达到最大,最大距离为 2。
示例 2:
输入:[[1,0,0],[0,0,0],[0,0,0]] 输出:4 解释: 海洋区域 (2, 2) 和所有陆地区域之间的距离都达到最大,最大距离为 4。
提示:
1 <= grid.length == grid[0].length <= 100
grid[i][j]
不是 0
就是 1
题目大意:
在一棵无限的二叉树上,每个节点都有两个子节点,树中的节点 逐行 依次按 “之” 字形进行标记。
如下图所示,在奇数行(即,第一行、第三行、第五行……)中,按从左到右的顺序进行标记;
而偶数行(即,第二行、第四行、第六行……)中,按从右到左的顺序进行标记。
给你树上某一个节点的标号 label,请你返回从根节点到该标号为 label 节点的路径,该路径是由途经的节点标号所组成的。
示例 1:
输入:label = 14
输出:[1,3,4,14]
示例 2:
输入:label = 26
输出:[1,2,6,10,26]
提示:
1 <= label <= 10^6
继续阅读题目大意:
最大的以 1 为边界的正方形
给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0。
示例 1:
输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9
示例 2:
输入:grid = [[1,1,0,0]]
输出:1
题目大意:
交替打印FooBar
我们提供一个类:
class FooBar {
public void foo() {
for (int i = 0; i < n; i++) {
print(“foo”);
}
}
public void bar() {
for (int i = 0; i < n; i++) {
print(“bar”);
}
}
}
两个不同的线程将会共用一个 FooBar 实例。其中一个线程将会调用 foo() 方法,另一个线程将会调用 bar() 方法。
请设计修改程序,以确保 “foobar” 被输出 n 次。
继续阅读题目大意:
有效括号的嵌套深度
有效括号字符串 仅由 “(” 和 “)” 构成,并符合下述几个条件之一:
空字符串
连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
嵌套,可以记作 (A),其中 A 是有效括号字符串
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
s 为空时,depth(“”) = 0
s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
s 为嵌套情况,depth(“(” + A + “)”) = 1 + depth(A),其中 A 是有效括号字符串
例如:””,”()()”,和 “()(()())” 都是有效括号字符串,嵌套深度分别为 0,1,2,而 “)(” 和 “(()” 都不是有效括号字符串。
给你一个有效括号字符串 seq,将其分成两个不相交的子序列 A 和 B,且 A 和 B 满足有效括号字符串的定义(注意:A.length + B.length = seq.length)。
现在,你需要从中选出 任意 一组有效括号字符串 A 和 B,使 max(depth(A), depth(B)) 的可能取值最小。
返回长度为 seq.length 答案数组 answer ,选择 A 还是 B 的编码规则是:如果 seq[i] 是 A 的一部分,那么 answer[i] = 0。否则,answer[i] = 1。即便有多个满足要求的答案存在,你也只需返回 一个。
继续阅读题目大意:
课程表 II
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
继续阅读题目大意:
课程表
现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?