两个数组间的距离值
给你两个整数数组 arr1 , arr2 和一个整数 d ,请你返回两个数组之间的 距离值 。
「距离值」 定义为符合此描述的元素数目:对于元素 arr1[i] ,不存在任何元素 arr2[j] 满足 |arr1[i]-arr2[j]| <= d 。
继续阅读两个数组间的距离值
给你两个整数数组 arr1 , arr2 和一个整数 d ,请你返回两个数组之间的 距离值 。
「距离值」 定义为符合此描述的元素数目:对于元素 arr1[i] ,不存在任何元素 arr2[j] 满足 |arr1[i]-arr2[j]| <= d 。
继续阅读题目大意:
检查网格中是否存在有效路径
给你一个 m x n 的网格 grid
。网格里的每个单元都代表一条街道。grid[i][j]
的街道可以是:
你最开始从左上角的单元格 (0,0) 开始出发,网格中的「有效路径」是指从左上方的单元格 (0,0) 开始、一直到右下方的 (m-1,n-1) 结束的路径。该路径必须只沿着街道走。
注意:你 不能 变更街道。
如果网格中存在有效的路径,则返回 true,否则返回 false 。
继续阅读题目大意:
安排电影院座位
如上图所示,电影院的观影厅中有 n 行座位,行编号从 1 到 n ,且每一行内总共有 10 个座位,列编号从 1 到 10 。
给你数组 reservedSeats ,包含所有已经被预约了的座位。比如说,researvedSeats[i]=[3,8] ,它表示第 3 行第 8 个座位被预约了。
请你返回 最多能安排多少个 4 人家庭 。4 人家庭要占据 同一行内连续 的 4 个座位。隔着过道的座位(比方说 [3,3] 和 [3,4])不是连续的座位,但是如果你可以将 4 人家庭拆成过道两边各坐 2 人,这样子是允许的。
题目大意:
将整数按权重排序
我们将整数 x 的 权重 定义为按照下述规则将 x 变成 1 所需要的步数:
比方说,x=3 的权重为 7 。因为 3 需要 7 步变成 1 (3 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1)。
给你三个整数 lo, hi 和 k 。你的任务是将区间 [lo, hi] 之间的整数按照它们的权重 升序排序 ,如果大于等于 2 个整数有 相同 的权重,那么按照数字自身的数值 升序排序 。
请你返回区间 [lo, hi] 之间的整数按权重排序后的第 k 个数。
注意,题目保证对于任意整数 x (lo <= x <= hi) ,它变成 1 所需要的步数是一个 32 位有符号整数。
继续阅读题目大意:
3n 块披萨
给你一个披萨,它由 3n 块不同大小的部分组成,现在你和你的朋友们需要按照如下规则来分披萨:
每一块披萨的大小按顺时针方向由循环数组 slices
表示。
请你返回你可以获得的披萨大小总和的最大值。
题目大意:
最长快乐前缀
「快乐前缀」是在原字符串中既是 非空 前缀也是后缀(不包括原字符串自身)的字符串。
给你一个字符串 s,请你返回它的 最长快乐前缀。
如果不存在满足题意的前缀,则返回一个空字符串。
题目大意:
罗马数字转整数
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000
例如, 罗马数字 2 写做 II
,即为两个并列的 1。12 写做 XII
,即为 X
+ II
。 27 写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在 V
(5) 和 X
(10) 的左边,来表示 4 和 9。X
可以放在 L
(50) 和 C
(100) 的左边,来表示 40 和 90。 C
可以放在 D
(500) 和 M
(1000) 的左边,来表示 400 和 900。给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
继续阅读题目大意:
整数转罗马数字
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000
例如, 罗马数字 2 写做 II
,即为两个并列的 1。12 写做 XII
,即为 X
+ II
。 27 写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在 V
(5) 和 X
(10) 的左边,来表示 4 和 9。X
可以放在 L
(50) 和 C
(100) 的左边,来表示 40 和 90。 C
可以放在 D
(500) 和 M
(1000) 的左边,来表示 400 和 900。给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
继续阅读一,取得十进制数字上的每一位
用当前数字与10求余数,该余数即是当前数字最低位上的数字,接下来我们将当前数字除以10,继续求它与10的余数,该数字即是次低位上的数字,重复上述过程直到当前数字为0为止。
List<Integer> list = new ArrayList<>(); // 取得x上的每一位 while(x>0){ list.add(x%10); x/=10; }
二, 判断回文
判断一个字符串是否是回文我们通常采用剥洋葱的方式,从最外层向内比较,解题时可以定义左右两个指针,初始时左指针指向下标0,右指针指向字符串末尾位,如果当前俩指针指向的值不一致,直接返回false。反之,左指针加一,右指针减一,向内移动一层继续比较,重复此过程直到左指针不再小于右指针为止。
public boolean isPalindrome(String s) { // 定义左右指针 int left=0,right=list.size()-1; while(left<right){ // 左右指针指向的数字不同时,返回false if(s.charAt(left) != s.charAt(right)){ return false; } left++; right--; } return true; }
三,不使用额外变量交换两个数字或字符的值